Math 332

Final Exam preparation list
 Spring 2010

1) Complex numbers:

1. Cartesian representation, addition/subtraction, division $\left(1 / \mathrm{z}=\bar{z} /|z|^{2}\right)$, complex conjugation.
2. Complex exponential and Euler equation
3. Polar representation of complex numbers: branches of argument

$$
z=|\mathrm{z}| \exp \{i \arg z\}=|z| \exp \{i \operatorname{Arg} z+i 2 \pi k\}
$$

4. Properties of $|z|$ and \bar{z}, triangle inequalities

$$
\begin{aligned}
& \left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right| ;\left|z_{1} / z_{2}\right|=\left|z_{1}\right| /\left|z_{2}\right| ;|\bar{z}|=|z| \\
& \left|z_{1}\right|-\left|z_{2}\right|\left|\leq\left|z_{1} \pm z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|\right.
\end{aligned}
$$

5. Complex roots
6. Sets in the plane (review lines and circles, $z=z_{0}+r \exp (i t)$)

2) Functions of complex variable:

1. Function as a Mapping
2. Limits and Continuity
3. Analyticity: $f(z)$ is analytic at z_{0} if its derivative exists there, as defined by a 2 D limit

$$
f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

4. Cauchy-Riemann equations hold if the function $(u+i v)$ is analytic : $u_{x}=-v_{y}, u_{y}=-v_{x}$
5. Harmonic functions and harmonic conjugates
6. Solving Laplace's equation with Dirichlet boundary conditions

3) Elementary functions

1. Polynomials and Rational functions: fundamental theorem of algebra, polynomial deflation, zeros, poles, partial fractions
2. Complex exponential, trigonometric, hyperbolic functions

$$
\begin{aligned}
\exp z & =\exp (x) \exp (i y)=\exp (x)(\cos y+i \sin y) \\
\sin z & =\sin x \cosh y+i \cos x \sinh y \\
\cos z & =\cos x \cosh y-i \sin x \sinh y
\end{aligned}
$$

3. Logarithmic function: branches and branch cuts

$$
\log \mathrm{z}=\log \{|\mathrm{z}| \exp (i \arg z)\}=\log |\mathrm{z}|+i \arg z=\log |\mathrm{z}|+i\{\operatorname{Arg} z+2 \pi k\}
$$

4. Complex powers, inverse trig and inverse hyperbolic functions

$$
\begin{aligned}
& z^{w}=\exp (w \log z) \\
& \sin ^{-1}(z)=-i \log \left\{i z+\left(1-z^{2}\right)^{1 / 2}\right\} \quad \text { (Derive, don't memorize) } \\
& \cos ^{-1}(z)=-i \log \left\{z+\left(z^{2}-1\right)^{1 / 2}\right\} \text { (Derive, don't memorize) } \\
& \tan ^{-1}(z)=i / 2 \log \{(1-i z) /(1+i z)\} \text { (Derive, don't memorize) }
\end{aligned}
$$

4) Contour integral:

1. Smooth arcs, simple closed curves and their parametrization; a contour as a sequence of directed smooth curves
2. Contour integral calculation methods:
i. Limit of a Riemann sum: $\lim _{\max \left|\Delta z_{k}\right| \rightarrow 0} \sum_{k=1}^{N} f\left(z_{k}^{*}\right) \Delta z_{k}$
ii. Contour parameterization: $\int f(z) d z=\int f(z(t)) z^{\prime}(t) d t$
iii. Antiderivative $\left(\int f(z) d z=\mathrm{F}\left(z_{\text {end }}\right)-\mathrm{F}\left(z_{\text {start }}\right)\right)$
iv. Changing contour of integration (see Cauchy integral theorem below)
v. Some loop integrals equal zero (see Cauchy integral theorem below)
3. Important integral (derive using $z=R \exp (i t)$): $\oint_{\left|z-z_{0}\right|=R} \frac{d z}{\left(z-z_{0}\right)^{n}}=\left\{\begin{array}{c}0, n \neq 1 \\ 2 \pi i, n=1\end{array}\right.$
4. Calculating upper bounds on integral modulus: $\left|\int_{\gamma} f(z) d z\right| \leq \max _{z \subset \gamma}|f(z)| \ell(\gamma)$
5. Theorem: if $f(z)$ is continuous in domain D, the following statements are equivalent:
(a) $\exists F(z) \mid F^{\prime}(z)=f(z)$
(b) $\oint_{\forall \gamma \subset D} f(z) d z=0$
(c) $\int_{\gamma_{A B}} f(z) d z=\int_{\gamma_{A B}^{\prime}} f(z) d z$
6. Cauchy integral theorem:

If $f(z)$ is analytic in a simply-connected domain D, the above three properties ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) hold.

- Corollary 1: if a function is analytic between two simple contours with same endpoints or between two simple closed curves, the two contour integrals are equal.
- Corollary 1^{*} : if there is a continuous deformation of one contour into another (without crossing non-analyticities, with endpoints fixed), the two integrals are equal.

7. Corollary of above two theorems: Loop integral is zero if either of the following is true:
(1) $f(z)$ is analytic inside and on the loop
(2) $f(z)$ has a continuous anti-derivative on the loop (Example: $1 / z^{2}$)

8. Cauchy Integral Formula:

If $f(z)$ is analytic in D and z_{0} is inside simple closed contour γ lying in D, then
$f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{f(z) d z}{z-z_{0}} ; \quad f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{\gamma} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}}$
Corollary: bounds on analytic functions: $\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!\max _{|z|=R}|f(z)|}{R^{n}}$
Corollary: analytic functions only reach their max modulus on the boundary of a domain. Analytic functions defined on unbounded domains are unbounded.

5) Series representation of analytic functions

1. If a function is analytic at z_{0}, it has a Taylor series representation in a neighborhood of z_{0} :

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \text { where } a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}=\frac{1}{2 \pi i} \oint_{C} \frac{f(\zeta) d \zeta}{\left(\zeta-z_{0}\right)^{n+1}}, \text { contour } C \text { contains } z_{0}
$$

T.S. converges in $\left|z-z_{0}\right|<R$, converges uniformly in $\left|z-z_{0}\right| \leq R^{\prime}<R$, and diverges in $\left|z-z_{0}\right|>R$
2. If a function is analytic in $r<\left|z-z_{0}\right|<R$, it has a Laurent series representation there:

$$
\begin{aligned}
& f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=0}^{\infty} a_{-n}\left(z-z_{0}\right)^{-n} \\
& a_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f(\zeta) d \zeta}{\left(\zeta-z_{0}\right)^{n+1}}, \text { where } \mathrm{C} \text { is inside the ring and contains } z_{0}
\end{aligned}
$$

The first term (positive-power series) converges in $\left|z-z_{0}\right|<R$, while the second term (principal part) converges in $\left|z-z_{0}\right|>r$. Laurent series diverges outside of the ring $r<\left|z-z_{0}\right|<R$
3. Convergence radius: $R=\lim _{j \rightarrow \infty}\left|a_{j} / a_{j+1}\right|$ (from ratio test) $R=1 / \limsup _{j \rightarrow \infty} \sqrt[j]{\left|a_{j}\right|}$ (from root test)
4. Use term-by-term operations to derive Taylor and Laurent series, avoiding explicit differentiation or integration. Use a simple shift to expand around non-zero z_{0}.
5. Remember important series $\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n}, \quad \exp z=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}, \log (1+z)=\sum_{n=1}^{\infty}(-1)^{n} \frac{z^{n}}{n}, \ldots$
6. If a function has an isolated singularity, it has a Laurent series expansion centered at that point. Isolated singularities are:
(1) Removable singularity: $a_{-n}=0$ for all $n>0$ (Laurent series = Taylor series)
(2) Pole of order $m: a_{-n}=0$ for all $n>m$. Function modulus is infinite at the pole.
(3) Essential Singularity: infinitely many non-zero a_{-n} (where $n>0$). Function assumes every possible value with possibly one exception in any neighborhood of E.S.
7. A function has no series representation centered on a non-isolated singularity such as a branch point, branch cut, or an accumulation point (e.g. $1 / \sin (1 / z)$ at $z_{0}=0$)
8. Alternative definitions of a zero: z_{0} is a zero of order m of $f(z)$ if:
(1) $f^{(n)}\left(z_{0}\right)=0$ for $n<m$, but $f^{(m)}\left(z_{0}\right) \neq 0$
(2) $f(z)=\left(z-z_{0}\right)^{m} g(z)$, where $g\left(z_{0}\right) \neq 0$
(3) $f(z)=a_{m}\left(z-z_{0}\right)^{m}+a_{m+1}\left(z-z_{0}\right)^{m+1}+a_{m+2}\left(z-z_{0}\right)^{m+2}+\ldots$, where $a_{m} \neq 0$
9. Alternative definitions of a pole: z_{0} is a pole of order m of $f(z)$ if:
(1) $1 / f(z)$ has a zero of order m at z_{0}
(2) $f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{m}}$, where $g\left(z_{0}\right) \neq 0$;
(3) $f(z)=\frac{a_{-m}}{\left(z-z_{0}\right)^{m}}+\frac{a_{-m+1}}{\left(z-z_{0}\right)^{m-1}}+\ldots$, where $a_{-m} \neq 0$

6) Cauchy's Residue Theorem and applications:

1. Term-by-term integration of a Laurent series gives:
$\oint_{C} f(z) d z=2 \pi i a_{-1}$, where C contains a single isolated singularity z_{0},
a_{-1} is called the residue of function $f(z)$ at z_{0}
2. Therefore, if $f(z)$ is analytic inside C except for the isolated singularities z_{i}, then:

$$
\oint_{C} f(z) d z=2 \pi i \sum_{j=1}^{n} \operatorname{Res}\left(f ; z_{j}\right)
$$

3. Residue calculation methods:
1) $\operatorname{Res}\left(f ; z_{0}\right)=a_{-1}$ (definition; works for all isolated singularities)
2) Pole of order m : just count the powers, and you get the Cauchy Integral Formula:

$$
\operatorname{Res}\left(\frac{g(z)}{\left(z-z_{0}\right)^{m}} ; z_{0}\right)=a_{-1}^{f}=a_{m-1}^{g}=\left.\frac{1}{(m-1)!} \frac{d^{m-1} g(z)}{d z^{m-1}}\right|_{z \rightarrow z_{0}}=\left.\frac{1}{(m-1)!} \frac{d^{m-1}\left(f(z)\left(z-z_{0}\right)^{m}\right)}{d z^{m-1}}\right|_{z \rightarrow z_{0}}
$$

3) Simple pole: $f(\mathrm{z})=p(z) / q(z)$, where $p\left(z_{0}\right) \neq 0, q\left(z_{0}\right)=0$:

$$
\operatorname{Res}\left(\frac{p(z)}{q(z)} ; z_{0}\right)=\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)}
$$

4. Special integrals taken using residue method:
1) Trigonometric integrals over a whole period: make a substitution $z=\exp (\mathrm{it})$
2) Improper integrals over rational functions from $-\infty$ to $+\infty$: complete the integration contour in the top or bottom half-plane
3) Improper integrals involving trig functions - replace trig functions with complex exponentials; complete the integral in the top or bottom half-plane; use the Jordan's Lemma.
4) Poles on the real axis - use indented contour. Integral over half a circle surrounding a simple pole is equal $2 \pi i$ times half the residue.
5) Integrals involving multi-valued functions - integrate over the branch cut
6) Improper integrals of rational functions from 0 to ∞ which are neither even nor odd multiply integrand by zero branch of $\log z$; integrate over the branch cut.

Jordan's Lemma:

$$
\oint_{C_{\rho}} R(z) e^{i m z} d z \leq \frac{\pi}{m} \max _{z \subset C_{\rho}}|R(z)|, \text { where } \mathrm{C}_{\rho} \text { is a semi-circle in the top half-plane }
$$

Properties of functions $f(z)$ analytic in domain D :

1) $f(z)$ can be expressed as a function of $z=x+i y$ only
2) $\mathrm{d} f / \mathrm{d} z$ exists in D (definition of analyticity)
3) All higher-order derivatives also exist in D (given by the C.I.F.)
4) $f(z)$ has a Taylor series representation in a neighborhood of any point in D
5) Cauchy-Riemann identities hold ($u_{x}=v_{y}, u_{y}=-v_{x}$)
6) $u=\operatorname{Re}(f)$ and $v=\operatorname{Im}(f)$ are harmonic in D
7) $f(z)$ is uniquely determined by its values over any single curve or open set in D.
[C.I.F. tells us how to determine $f(z)$ from its values along a loop around z]
8) $f(z)$ at the center of any circle in D equals it average over the entire circle
9) $|f(z)|$ can only reach its maximum on the boundary of D
10) If D is unbounded, then $f(z)$ is unbounded
11) If D is simply connected, then Cauchy Integral Theorem applies:
a) All loop integrals of $f(z)$ in D are zero, and all open contour integrals are path independent
b) $f(z)$ has an antiderivative in D
