Math 332 Final Exam preparation list Spring 2010

1) Complex numbers:

- 1. Cartesian representation, addition/subtraction, division $(1/z=\overline{z}/|z|^2)$, complex conjugation.
- 2. Complex exponential and Euler equation
- 3. Polar representation of complex numbers: branches of argument

 $z = |z| \exp\{i \arg z\} = |z| \exp\{i \operatorname{Arg} z + i 2\pi k\}$

4. Properties of |z| and \overline{z} , triangle inequalities

$$| z_1 z_2 |=| z_1 || z_2 |; | z_1 / z_2 |=| z_1 |/| z_2 |; | \overline{z} |=| z | || z_1 |-| z_2 || \le |z_1 \pm z_2| \le |z_1| + |z_2|$$

- 5. Complex roots
- 6. Sets in the plane (review lines and circles, $z = z_0 + r \exp(i t)$)

2) Functions of complex variable:

- 1. Function as a Mapping
- 2. Limits and Continuity
- 3. Analyticity: f(z) is analytic at z_0 if its derivative exists there, as defined by a 2D limit $f(z_1 + \Delta z) f(z_0) = f(z_0) f(z_0)$

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

- 4. Cauchy-Riemann equations hold if the function (u + iv) is analytic : $u_x = -v_y$, $u_y = -v_x$
- 5. Harmonic functions and harmonic conjugates
- 6. Solving Laplace's equation with Dirichlet boundary conditions

3) Elementary functions

- 1. Polynomials and Rational functions: fundamental theorem of algebra, polynomial deflation, zeros, poles, partial fractions
- 2. Complex exponential, trigonometric, hyperbolic functions $exp z = exp(x)exp(i y) = exp(x) (\cos y + i \sin y)$ $\sin z = \sin x \cosh y + i \cos x \sinh y$

 $\cos z = \cos x \cosh y - i \sin x \sinh y$

3. Logarithmic function: branches and branch cuts

 $\log z = \log\{ |z| \exp(i \arg z) \} = \operatorname{Log} |z| + i \arg z = \operatorname{Log} |z| + i \{\operatorname{Arg} z + 2\pi k\}$

4. Complex powers, inverse trig and inverse hyperbolic functions

 $z^{w} = \exp(w \log z)$ $\sin^{-1}(z) = -i \log \{i z + (1 - z^{2})^{1/2}\} \text{ (Derive, don't memorize)}$ $\cos^{-1}(z) = -i \log \{z + (z^{2} - 1)^{1/2}\} \text{ (Derive, don't memorize)}$ $\tan^{-1}(z) = i/2 \log \{(1 - i z) / (1 + i z)\} \text{ (Derive, don't memorize)}$

4) Contour integral:

- 1. Smooth arcs, simple closed curves and their parametrization; a contour as a sequence of directed smooth curves
- 2. Contour integral calculation methods:
 - i. Limit of a Riemann sum: $\lim_{\max|\Delta z_k| \to 0} \sum_{k=1}^N f(z_k^*) \Delta z_k$
 - ii. Contour parameterization: $\int f(z) dz = \int f(z(t)) z'(t) dt$
 - iii. Antiderivative $(\int f(z) dz = F(z_{end}) F(z_{start}))$
 - iv. Changing contour of integration (see Cauchy integral theorem below)
 - v. Some loop integrals equal zero (see Cauchy integral theorem below)

3. Important integral (derive using
$$z = R \exp(i t)$$
): $\oint_{|z-z_0|=R} \frac{dz}{(z-z_0)^n} = \begin{cases} 0, n \neq 1\\ 2\pi i, n = 1 \end{cases}$
4. Calculating upper bounds on integral modulus: $\left| \int_{\gamma} f(z) dz \right| \le \max_{z = \gamma} |f(z)| \ell(\gamma)$

5. **Theorem:** if f(z) is continuous in domain *D*, the following statements are equivalent: (a) $\exists F(z) \mid F'(z) = f(z)$ (b) $\oint_{\forall \gamma \subset D} f(z) dz = 0$ (c) $\int_{\gamma_{AB}} f(z) dz = \int_{\gamma'_{AB}} f(z) dz$

6. Cauchy integral theorem:

If f(z) is **analytic** in a **simply-connected** domain *D*, the above three properties (a,b,c) hold.

- Corollary 1: if a function is analytic between two simple contours with same endpoints or between two simple closed curves, the two contour integrals are equal.
- Corollary 1*: if there is a continuous deformation of one contour into another (without crossing non-analyticities, with endpoints fixed), the two integrals are equal.
- 7. Corollary of above two theorems: Loop integral is zero if either of the following is true:

(1) f(z) is analytic **inside and on** the loop

(2) f(z) has a continuous anti-derivative on the loop (Example: $1/z^2$)

8. Cauchy Integral Formula:

If f(z) is analytic in D and z_0 is inside simple closed contour γ lying in D, then

$$f(z_0) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)dz}{z - z_0}; \qquad f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_{\gamma} \frac{f(z)dz}{(z - z_0)^{n+1}}$$

Corollary: bounds on analytic functions: $|f^{(n)}(z_0)| \le \frac{n! \max_{|z|=R} |f(z)|}{R^n}$

Corollary: analytic functions only reach their max modulus on the boundary of a domain. Analytic functions defined on unbounded domains are unbounded.

5) Series representation of analytic functions

1. If a function is analytic at z_0 , it has a **Taylor series** representation in a neighborhood of z_0 :

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \text{ where } a_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \oint_C \frac{f(\zeta) d\zeta}{(\zeta - z_0)^{n+1}}, \text{ contour C contains } z_0$$

T.S. converges in $|z-z_0| \le R$, converges uniformly in $|z-z_0| \le R' \le R$, and diverges in $|z-z_0| \ge R$

2. If a function is analytic in $r < |z-z_0| < R$, it has a **Laurent series** representation there:

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=0}^{\infty} a_{-n} (z - z_0)^{-n}$$
$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(\zeta) d\zeta}{(\zeta - z_0)^{n+1}}, \text{ where C is inside the ring and contains } z_0$$

The first term (positive-power series) converges in $|z-z_0| < R$, while the second term (principal part) converges in $|z-z_0| > r$. Laurent series diverges outside of the ring $r < |z-z_0| < R$

- 3. Convergence radius: $R = \lim_{j \to \infty} |a_j / a_{j+1}|$ (from ratio test) $R = 1 / \limsup_{j \to \infty} \sqrt[j]{|a_j|}$ (from root test)
- 4. Use term-by-term operations to derive Taylor and Laurent series, avoiding explicit differentiation or integration. Use a simple shift to expand around non-zero z_0 .

5. Remember important series
$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$$
, $\exp z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$, $Log(1+z) = \sum_{n=1}^{\infty} (-1)^n \frac{z^n}{n}$, ...

- 6. If a function has an isolated singularity, it has a Laurent series expansion centered at that point. Isolated singularities are:
 - (1) Removable singularity: $a_{-n} = 0$ for all n > 0 (Laurent series = Taylor series)
 - (2) Pole of order m: $a_{-n} = 0$ for all n > m. Function modulus is infinite at the pole.
 - (3) Essential Singularity: infinitely many non-zero a_{-n} (where n > 0). Function assumes every possible value with possibly one exception in any neighborhood of E.S.
- 7. A function has **no** series representation centered on a non-isolated singularity such as a branch point, branch cut, or an accumulation point (e.g. $1/\sin(1/z)$ at $z_0=0$)
- 8. Alternative definitions of a zero: z_0 is a zero of order *m* of f(z) if:

(1)
$$f^{(n)}(z_0) = 0$$
 for $n < m$, but $f^{(m)}(z_0) \neq 0$
(2) $f(z) = (z - z_0)^m g(z)$, where $g(z_0) \neq 0$
(3) $f(z) = a_m (z - z_0)^m + a_{m+1} (z - z_0)^{m+1} + a_{m+2} (z - z_0)^{m+2} + ...,$ where $a_m \neq 0$

- 9. Alternative definitions of a pole: z_0 is a pole of order *m* of f(z) if:
 - (1) 1/f(z) has a zero of order *m* at z_0

(2)
$$f(z) = \frac{g(z)}{(z - z_0)^m}$$
, where $g(z_0) \neq 0$; (3)

(3) $f(z) = \frac{a_{-m}}{(z-z_0)^m} + \frac{a_{-m+1}}{(z-z_0)^{m-1}} + \dots$, where $a_{-m} \neq 0$

6) Cauchy's Residue Theorem and applications:

1. Term-by-term integration of a Laurent series gives:

 $\oint_C f(z) dz = 2\pi i \ a_{-1}, \text{ where C contains a single isolated singularity } z_0,$ $a_{-1} \text{ is called the$ *residue* $of function } f(z) \text{ at } z_0$

2. Therefore, if f(z) is analytic inside C except for the isolated singularities z_i , then:

$$\oint_C f(z) dz = 2\pi i \sum_{j=1}^n \operatorname{Res}(f; z_j)$$

- 3. Residue calculation methods:
 - 1) $\operatorname{Res}(f; z_0) = a_{-1}$ (definition; works for all isolated singularities)
 - 2) Pole of order *m*: just count the powers, and you get the Cauchy Integral Formula:

$$\operatorname{Res}\left(\frac{g(z)}{(z-z_{0})^{m}}; z_{0}\right) = a_{-1}^{f} = a_{m-1}^{g} = \frac{1}{(m-1)!} \frac{d^{m-1}g(z)}{dz^{m-1}} \bigg|_{z \to z_{0}} = \frac{1}{(m-1)!} \frac{d^{m-1}\left(f(z)(z-z_{0})^{m}\right)}{dz^{m-1}} \bigg|_{z \to z_{0}}$$
3) Simple pole: $f(z) = p(z)/q(z)$, where $p(z_{0}) \neq 0$, $q(z_{0}) = 0$:

- 3) Simple pole: f(z) = p(z)/q(z), where $p(z_0) \neq 0$, $q(z_0) = 0$: $\operatorname{Res}\left(\frac{p(z)}{q(z)}; z_0\right) = \frac{p(z_0)}{q'(z_0)}$
- 4. Special integrals taken using residue method:
 - 1) Trigonometric integrals over a whole period: make a substitution $z = \exp(i t)$
 - 2) Improper integrals over rational functions from $-\infty$ to $+\infty$: complete the integration contour in the top or bottom half-plane
 - 3) Improper integrals involving trig functions replace trig functions with complex exponentials; complete the integral in the top or bottom half-plane; use the Jordan's Lemma.
 - 4) Poles on the real axis use indented contour. Integral over half a circle surrounding a simple pole is equal $2\pi i$ times half the residue.
 - 5) Integrals involving multi-valued functions integrate over the branch cut
 - 6) Improper integrals of rational functions from 0 to ∞ which are neither even nor odd multiply integrand by zero branch of log *z*; integrate over the branch cut.

Jordan's Lemma:

$$\oint_{C_{\rho}} R(z) e^{imz} dz \leq \frac{\pi}{m} \max_{z \subset C_{\rho}} |R(z)|, \text{ where } C_{\rho} \text{ is a semi-circle in the top half-plane}$$

Properties of functions f(z) analytic in domain D:

- 1) f(z) can be expressed as a function of z = x+iy only
- 2) df/dz exists in *D* (definition of analyticity)
- 3) All higher-order derivatives also exist in *D* (given by the C.I.F.)
- 4) f(z) has a Taylor series representation in a neighborhood of any point in D
- 5) Cauchy-Riemann identities hold $(u_x = v_y, u_y = -v_x)$
- 6) $u=\operatorname{Re}(f)$ and $v=\operatorname{Im}(f)$ are harmonic in D
- 7) f(z) is uniquely determined by its values over any single curve or open set in D.

[C.I.F. tells us how to determine f(z) from its values along a loop around z]

- 8) f(z) at the center of any circle in D equals it average over the entire circle
- 9) |f(z)| can only reach its maximum on the boundary of D
- 10) If D is unbounded, then f(z) is unbounded
- 11) If D is simply connected, then Cauchy Integral Theorem applies:
 - a) All loop integrals of f(z) in D are zero, and all open contour integrals are path independent
 - b) f(z) has an antiderivative in D